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Solitary waves and their critical behavior in a nonlinear nonlocal medium
with power-law response
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We discuss a nonlocal generalization of the nonlinear Stthger equation and study propagation of
solitary waves in a nonlinear nonlocal medium at its critical state, the response of which obeys the power law
with the exponenk. Using the time-dependent variational principle, we derive a set of dynamical equations
and develop the fixed-point analysis. A critical behavior is found irktdependence of the width of the wave
packet. We also present a proof of the stability of the system and discuss an oscillatory phenomenon in the
self-focusing proces$S1063-651X98)11104-2

PACS numbes): 42.65.Tg, 42.65.Vh, 03.40.Kf

Studies of nonlinear waves and theory of critical phenom-The field equation for ¢ has the following form:
ena have long histories individually. However, wave dynam+(o,0¢,0,0y,0x,-..)+ ¢* =0 (oy=4do/dt and so ofn
ics in media with large response lengths seems to be stilfhe Lagrangian density’, and the corresponding field-
infant as a research area. There exist interesting problems #guation functiorF have complicated structures microscopi-
be addressed from the viewpoint of solitons. For examplecally, in general. However, in the picture of wave propaga-
when the width of a wave packet is comparable with ortion in a background medium, what is needed is not the
shorter than the characteristic response length of a mediurmicroscopic fields itself but rather its statistical average):
effects of nonlocality are expected to become signififaht a wave, whose typical wavelength is larger than the charac-
Then the following questions naturally arise: Are there stillteristic scale of a material structure of the medium, feels only
solitonlike solutions? If yes, how is the medium nonlocality (o). Therefore a general response-theoretic discussion may
reflected in the physical properties of such localized waves@pply. In the linear response theory, the average with an

The purpose of this paper is to discuss propagation oéxternal source is generically not equal to that without
waves in a nonlinear medium at its critical state using asources. The difference between the two can be written as
simple one-dimensional model. In this model, the propagafollows [3]:
tion is governed by the nonlocal extension of the nonlinear

Schralinger equatiotNLSE) [2]. Specifically the medium is a(X, 1) ={(X,t))ex— (o (X,1) o

characterized by its response obeying the power law with the

exponentk. Since such a medium has no finite scale of re- :f dx’ R(x—x")| (X" ,1)[2, 3
sponse length, the influence of nonlocality is always relevant

to any localized waves. We analyze this model based on the o )
standard variational principle and identify a solitary-wave Where(o)eqand{o)o mean the statistical averagescofvith
solution. We find a critical behavior in tHe dependence of and without the sourck)|®, respectively(c), is a constant,
the width of the wave. We also present a proof of the stabilin general.R(x—x") is a response function of the medium

ity of the system. and is essentially equivalent to the two-point correlation
The model we consider is microscopically described byfunction ofo. A possible time dependence fis not taken
the action integral of the following form: into account. That is, the relaxation time is assumed to be
negligibly short.

. [ L oY P Thus, the effective wave equation f@r is obtained by
ILy*,¢,0]= dt dx 5 ¥ ot ot replacingo in Eq. (2) by (o )ey as follows:

AP Y do d oYy &P
i a_x+a¢*¢+cg(a,a—‘:,§—‘;,...)], 204 25 [ xR 0 i =0, @

@ provided that the constant pdit), has been eliminated by
wherey(x,t) anda(x,t) denote a complex wave field and a redefining the phase of. Obviously, Eq.(4) becomes the
real local field describing the medium material, respectively standard NLSE in the particular case of the singular response
The spatial integrations are performed over the whole rang®(x—x")~ §(x—x").

(—<0,). All quantities and parameters are made dimension- Before proceeding, we wish to make brief comments on
less for simplicity.£, stands for the Lagrangian density of the integrodifferential equatiof). This equation is familiar

the o field. From this action, the field equation fgrreads  in the Hartree-Fock theory for quantum many-body problems

5 [4]. In the area of classical physics, on the other hand, this is
| 5_'/’+<9_¢+U¢:O @) of a very modern issue in nonlinear wave dynamics. For
gt ox? ' example, EngelbrecHb] discusses that the nonlocal equa-
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tions of this type of inhomogeneity appear in the problems opling constant describing the strength of nonlinearity of Eq.

wave propagation in heterogeneous media, which are the mé4). This is a homogeneous function of degreek:

dia composed of superposition of several homogeneous m&(ax,ax’)=a *R(x,x’). k is simply called the exponent

dia like a void distribution or a porous structure. here. As mentioned above, it has no finite length scales, and
Now, suppose the medium is at its critical state. In thistherefore localized waves always feel the nonlocality in any

case, the response |ength becomes very |arge, |dea||y infini@tuation. In what follows, first we discuss the Stablllty of the

[6,7]. To model such a medium, it is natural to assume theSystem and then study the problem of a solitary wave propa-

following power-law responsg7]: gating in the nonlinear nonlocal medium characterized by the
responseb).
R(x—x")=y|x—x'| 7% (0<k<1), (5) First we prove the stability of the system described by

Eqgs.(4) and(5). For this purpose, let us consider the follow-
where y is a positive constant, and plays the role of a cou-ing effective action:

Y
ax

i d P*
v 1= | [ at dx['g(w* v w)—

From this, follows the Hamiltonian

H=f dx

The wave equatiorf4) with (5) can be derived from the canonical equatieny/dt=SH/Sy*. To establish the general
stability of the system, we have to show that the Hamiltonian is bounded below. First we note the following inequality
(Theorem 382 in Ref.8]):

2
}Jr%fffdt dx dx | (x| 2x=x'| M px" D2 (6)

Iy

oX

2 © ES it 2 I,t 2
‘%f_xdxf_de’W(X&'_'f(fﬁ o oeken). (7)

Jw dxfw dx’ f(x)g(xl)<|<( YFUPG1a >13+£>1 o<k—2—1—1<1 8
LS e TP PAT e T T T e )

whereK is a positive constant depending only on the parameieandq, and

F=£;dxfp(x), szidx gP(x). 9

This inequality holds for any nonnegative functibrandg, which belong toLP(R) andL9(R), respectively, wher& P(R)
={f|f”..dx fP(x) <}. We assume that the local intensity of a physical wave function of the system is a menhS¢Rpf
Then, identifyingf andg with |(x,t)|? and settingp=q, we have

- - 2 r ]2 - 2Ip
f_xdxf_wdx' | (012 (X" )] sK(p,p)U_deW(xitnzp) _ (10

Ix—x'|¥

Using this inequality together with the nonnegativity of the first term on the right-hand side ¢7)Eeve find

(11)

Il
[~
<l

© 2/p
HB—%K(p,p)(f_mdxw(x.t)lz") (p 7k

which proves the stability of the system.

Now we proceed to study the problem of solitary wave propagation. It is unlikely that exact solutions can be found for this
system with a generd. The methods of inverse scattering or Lax pairs do not seem to work. Therefore we here examine the
time-dependent variational principle in the Rayleigh-Ritz mari8ér

We optimize the functional6) by employing the Gaussian ansatz for the trial wave function:

[x—a(t)]2+ip(H[x—a(t)]f, (12

MZ 1/4 1
w(x’t):[—ZWG(t)} exp{—[—AfG(t)—iA(t)
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where the total intensity of is set to be G
o 80 0
|v|=f dx|g(x,1)]2 (13
- 60
M is constant int since the action integrdb) [and, there- (a)

fore, also Eq(4)] is invariant under the global gauge trans-  4¢
formation: y—e'%y, y* —e "y*. Substituting Eq.(12)
into Eqg. (6) and neglecting irrelevant total derivatives with

20f
respect ta, we have the reduced action
Ieffzjdt L, (14 0.2 0.4 0.6 0.8 k 1
wherelL is the Lagrangian in the first-order form GO
L=M(pg+AG)—H, (15 4000
with the Hamiltonian 3000 (b)
1 »p 1-k
_ 2 2, — —k/2 2000
H=M|p?+4GA*+ ;== 5 (4G) F( 5 ”
(16) 1000
provided that we have set
vM
== 1
P = (17
250000

In the above] (2) is the gamma function of argumentand
the overdot stands for the differentiation with respect.to 200000
The reduced system has a simplectic structure in terms of the
canonical variables,G,p,A), and thus the problem is  150000¢
translated into particle dynamics of these collective vari-

ables. 100000 }
Now, Hamilton's principle of least action leads to the
following set of equations: 50000}
a=2p, (18) : : : :
0.2 0.4 0.6 0.8 1
p=0, (19 k
. FIG. 1. Plots ofG, as the function of the exponeft The
G=8AG, (200 values of the parametep are, respectively,@ p=1, (b) p
=0.00462,(c) p=0.0002. All quantities are dimensionless.
- 1 C(k)
2_ —
A+aA 4G? 4GTFR2 21) In contrast to the pair ofd,p), the motions of G,A) are
_ N o determined by the coupled nonlinear equations. We first per-
whereC(K) is a positive quantity given by form the fixed-point analysis of the system of equati2®

and (21). The fixed point of these equations, which is the

k [1-k i ion i
Ck)=p o F( - 22) singular solution, is found to be
. : Go(k)=C(k)¥*~2, (25)
From Eqs(18) and(19), it follows that the location of the
peak of the wave packet has a motion of constant velocity: Are0 26)
O_ .

g=2pet+do, P=PpPo (0o and py are arbitrary constants
Clearly this uniformity comes from the fact that the response

(5) possesses the translational invariance. Hencefpgtis ~ The wave function(12) with these parameter values de-
set equal to zero: scribes a variational solitary wave, whose shéyewidth) is

kept unchanged through the propagation process. We note
d=do, (23)  that Eq.(26) removes the chirp factor from the wave func-
tion at the fixed point.
p=0. (24 In Fig. 1, we present the plots &, with respect to the
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exponentk. Very different behaviors appear for large and
small values of the parametgin Eq.(17). The critical value
of p is found to be

p.=0.004@ . . .. (27)

Above p. the (squareg width of the solitary wave decreases
monotonically as the exponehtgrows, whereas below,
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This potential is bounded below and approaches zero from
the negative values. Its minimum value is determined by the
fixed-point solution:

nontrivial extrema are observed. It can be analytically shown

that there exists only one local minimum. Fprp., the
width decreases monotonically with respectktoA larger
value of k corresponds to a stronger singularity in the re-

Emin=U(VGo/2). (33
Thus, with any initial condition satisfying
Emins<E<O, (34

sponse, which may give a tight mode coupling to realize ¢he motion ofQ is bounded and oscillatory, and therefore the

sharp focusing. However, fgr<p., the situation drastically
changes. For example, in a medium havkzg0.8, the width

solution is in fact stable. In particular, the oscillation with
frequency

at the fixed point is almost three times larger than that in a

medium ofk=0.2. Therefore, below,, the sharp focusing
is hardly obtained in media with relatively large This is
the main result of the present work.

Finally we briefly discuss small perturbation on the varia-
tional wave packet. Let us consider the initial condition.

w=2—kC(k)2?¥

is induced by small perturbation on the fixed point, i.e., the
variational shape-preserving solution.

(39

Since our system is an autonomous Hamiltonian system, the !n conclusion, we have studied the physical properties of

Hamiltonian(16) is a constant of motion. It is set as

H=ME, (29
whereE is a constant to be determined by an initial condi-
tion. Therefore, recalling Eq24), it follows from this con-
straint that

Gl*k/2

» 8C(k)
G2=16EG—4+ (29)

Changing the variable
G=2Q?, (30)

we can rewrite Eq(29) in the standard mechanical form:

1.,
5 Q=E-U(Q), (3
whereU is the potential given by
C(k
(k) (32

U(Q)=8—Qz—2?k7w-

a solitary wave propagating in the nonlinear nonlocal me-
dium with the power-law response. Using the time-
dependent variational principle with the Gaussian ansatz, we
have clarified how the width of the solitary wave depends on
the exponent of the power law. We have found a critical
behavior of the wave-packet width under the change of the
value of the coupling constant multiplied by the total inten-
sity. We have also presented the proof of the stability of the
system for a general configuration of physical wave func-
tions.

We have studied a nonlocal extension of the NLSE. The
standard NLSE is known to play a central role in nonlinear
optics and optical solitong2]. [There, the time parameter
should be replaced by the coordinate of the longitudinal
(propagation axis.] The nonlinearity is induced by the Kerr
media. The present work suggests that it is of interest to
investigate optical properties of such media at their critical
states from the viewpoint of the quality of self-focusing of
optical solitons.
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