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Solitary waves and their critical behavior in a nonlinear nonlocal medium
with power-law response
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College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan

~Received 14 October 1997; revised manuscript received 29 December 1997!

We discuss a nonlocal generalization of the nonlinear Schro¨dinger equation and study propagation of
solitary waves in a nonlinear nonlocal medium at its critical state, the response of which obeys the power law
with the exponentk. Using the time-dependent variational principle, we derive a set of dynamical equations
and develop the fixed-point analysis. A critical behavior is found in thek dependence of the width of the wave
packet. We also present a proof of the stability of the system and discuss an oscillatory phenomenon in the
self-focusing process.@S1063-651X~98!11104-2#

PACS number~s!: 42.65.Tg, 42.65.Vh, 03.40.Kf
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Studies of nonlinear waves and theory of critical pheno
ena have long histories individually. However, wave dyna
ics in media with large response lengths seems to be
infant as a research area. There exist interesting problem
be addressed from the viewpoint of solitons. For exam
when the width of a wave packet is comparable with
shorter than the characteristic response length of a med
effects of nonlocality are expected to become significant@1#.
Then the following questions naturally arise: Are there s
solitonlike solutions? If yes, how is the medium nonlocal
reflected in the physical properties of such localized wav

The purpose of this paper is to discuss propagation
waves in a nonlinear medium at its critical state using
simple one-dimensional model. In this model, the propa
tion is governed by the nonlocal extension of the nonlin
Schrödinger equation~NLSE! @2#. Specifically the medium is
characterized by its response obeying the power law with
exponentk. Since such a medium has no finite scale of
sponse length, the influence of nonlocality is always relev
to any localized waves. We analyze this model based on
standard variational principle and identify a solitary-wa
solution. We find a critical behavior in thek dependence o
the width of the wave. We also present a proof of the sta
ity of the system.

The model we consider is microscopically described
the action integral of the following form:

I @c* ,c,s#5E E dt dxH i

2 S c*
]c

]t
2

]c*

]t
c D

2
]c*

]x

]c

]x
1sc* c1LsS s,

]s

]t
,

]s

]x
,...D J ,

~1!

wherec(x,t) ands(x,t) denote a complex wave field and
real local field describing the medium material, respective
The spatial integrations are performed over the whole ra
(2`,`). All quantities and parameters are made dimensi
less for simplicity.Ls stands for the Lagrangian density
the s field. From this action, the field equation forc reads

i
]c

]t
1

]2c

]x2 1sc50. ~2!
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The field equation for s has the following form:
F(s,s t ,s tt ,sx ,sxx ,...)1c* c50 ~s t[]s/]t and so on!.
The Lagrangian densityLs and the corresponding field
equation functionF have complicated structures microscop
cally, in general. However, in the picture of wave propag
tion in a background medium, what is needed is not
microscopic fields itself but rather its statistical average^s&:
a wave, whose typical wavelength is larger than the cha
teristic scale of a material structure of the medium, feels o
^s&. Therefore a general response-theoretic discussion
apply. In the linear response theory, the average ofs with an
external source is generically not equal to that witho
sources. The difference between the two can be written
follows @3#:

s̄~x,t !5^s~x,t !&ext2^s~x,t !&0

5E dx8 R~x2x8!uc~x8,t !u2, ~3!

where^s&ext and^s&0 mean the statistical averages ofs with
and without the sourceucu2, respectively.̂ s&0 is a constant,
in general.R(x2x8) is a response function of the mediu
and is essentially equivalent to the two-point correlati
function of s. A possible time dependence inR is not taken
into account. That is, the relaxation time is assumed to
negligibly short.

Thus, the effective wave equation forc is obtained by
replacings in Eq. ~2! by ^s&ext as follows:

i
]c

]t
1

]2c

]x2 1E dx8R~x2x8!uc~x8,t !u2c~x,t !50, ~4!

provided that the constant part^s&0 has been eliminated by
redefining the phase ofc. Obviously, Eq.~4! becomes the
standard NLSE in the particular case of the singular respo
R(x2x8);d(x2x8).

Before proceeding, we wish to make brief comments
the integrodifferential equation~4!. This equation is familiar
in the Hartree-Fock theory for quantum many-body proble
@4#. In the area of classical physics, on the other hand, thi
of a very modern issue in nonlinear wave dynamics. F
example, Engelbrecht@5# discusses that the nonlocal equ
6066 © 1998 The American Physical Society
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57 6067SOLITARY WAVES AND THEIR CRITICAL BEHAVIOR . . .
tions of this type of inhomogeneity appear in the problems
wave propagation in heterogeneous media, which are the
dia composed of superposition of several homogeneous
dia like a void distribution or a porous structure.

Now, suppose the medium is at its critical state. In t
case, the response length becomes very large, ideally infi
@6,7#. To model such a medium, it is natural to assume
following power-law response@7#:

R~x2x8!5gux2x8u2k ~0,k,1!, ~5!

whereg is a positive constant, and plays the role of a co
f
e-
e-

s
ite
e

-

pling constant describing the strength of nonlinearity of E
~4!. This is a homogeneous function of degree2k:
R(ax,ax8)5a2kR(x,x8). k is simply called the exponen
here. As mentioned above, it has no finite length scales,
therefore localized waves always feel the nonlocality in a
situation. In what follows, first we discuss the stability of th
system and then study the problem of a solitary wave pro
gating in the nonlinear nonlocal medium characterized by
response~5!.

First we prove the stability of the system described
Eqs.~4! and~5!. For this purpose, let us consider the follow
ing effective action:
l
quality

for this
ine the
I eff@c* ,c#5E E dt dxH i

2 S c*
]c

]t
2

]c*

]t
c D2U]c

]xU
2J 1

g

2 E E E dt dx dx8uc~x,t !u2ux2x8u2kuc~x8,t !u2. ~6!

From this, follows the Hamiltonian

H5E
2`

`

dxU]c

]xU
2

2
g

2 E
2`

`

dxE
2`

`

dx8
uc~x,t !u2uc~x8,t !u2

ux2x8uk
~0,k,1!. ~7!

The wave equation~4! with ~5! can be derived from the canonical equationi ]c/]t5dH/dc* . To establish the genera
stability of the system, we have to show that the Hamiltonian is bounded below. First we note the following ine
~Theorem 382 in Ref.@8#!:

E
2`

`

dxE
2`

`

dx8
f ~x!g~x8!

ux2x8uk <K~p,q!F1/pG1/q S p,q.1,
1

p
1

1

q
.1, 0,k522

1

p
2

1

q
,1D , ~8!

whereK is a positive constant depending only on the parametersp andq, and

F5E
2`

`

dx fp~x!, G5E
2`

`

dx gp~x!. ~9!

This inequality holds for any nonnegative functionf andg, which belong toLp(R) andLq(R), respectively, whereLp(R)
5$ f u*2`

` dx fp(x),`%. We assume that the local intensity of a physical wave function of the system is a member ofLp(R).
Then, identifyingf andg with uc(x,t)u2 and settingp5q, we have

E
2`

`

dxE
2`

`

dx8
uc~x,t !u2uc~x8,t !u2

ux2x8uk <K~p,p!S E
2`

`

dxuc~x,t !u2pD 2/p

. ~10!

Using this inequality together with the nonnegativity of the first term on the right-hand side of Eq.~7!, we find

H>2
g

2
K~p,p!S E

2`

`

dxuc~x,t !u2pD 2/p S p5
2

22kD , ~11!

which proves the stability of the system.
Now we proceed to study the problem of solitary wave propagation. It is unlikely that exact solutions can be found

system with a generalk. The methods of inverse scattering or Lax pairs do not seem to work. Therefore we here exam
time-dependent variational principle in the Rayleigh-Ritz manner@9#.

We optimize the functional~6! by employing the Gaussian ansatz for the trial wave function:

c~x,t !5F M2

2pG~ t !G
1/4

expH 2F 1

4G~ t !
2 iL~ t !G@x2q~ t !#21 ip~ t !@x2q~ t !#J , ~12!
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where the total intensity ofc is set to be

M5E
2`

`

dxuc~x,t !u2. ~13!

M is constant int since the action integral~6! @and, there-
fore, also Eq.~4!# is invariant under the global gauge tran
formation: c→eiuc, c*→e2 iuc* . Substituting Eq.~12!
into Eq. ~6! and neglecting irrelevant total derivatives wi
respect tot, we have the reduced action

I eff5E dt L, ~14!

whereL is the Lagrangian in the first-order form

L5M ~pq̇1LĠ!2H, ~15!

with the Hamiltonian

H5M Fp214GL21
1

4G
2

r

2
~4G!2k/2GS 12k

2 D G ,
~16!

provided that we have set

r5
gM

Ap
. ~17!

In the above,G(z) is the gamma function of argumentz and
the overdot stands for the differentiation with respect tot.
The reduced system has a simplectic structure in terms o
canonical variables (q,G,p,L), and thus the problem is
translated into particle dynamics of these collective va
ables.

Now, Hamilton’s principle of least action leads to th
following set of equations:

q̇52p, ~18!

ṗ50, ~19!

Ġ58LG, ~20!

L̇14L25
1

4G22
C~k!

4G11k/2 , ~21!

whereC(k) is a positive quantity given by

C~k!5r
k

2k GS 12k

2 D . ~22!

From Eqs.~18! and~19!, it follows that the location of the
peak of the wave packet has a motion of constant veloc
q52p0t1q0 , p5p0 ~q0 and p0 are arbitrary constants!.
Clearly this uniformity comes from the fact that the respon
~5! possesses the translational invariance. Henceforth,p0 is
set equal to zero:

q5q0 , ~23!

p50. ~24!
he

-

y:

e

In contrast to the pair of (q,p), the motions of (G,L) are
determined by the coupled nonlinear equations. We first p
form the fixed-point analysis of the system of equations~20!
and ~21!. The fixed point of these equations, which is t
singular solution, is found to be

G0~k!5C~k!2/~k22!, ~25!

L050. ~26!

The wave function~12! with these parameter values d
scribes a variational solitary wave, whose shape~or width! is
kept unchanged through the propagation process. We
that Eq.~26! removes the chirp factor from the wave fun
tion at the fixed point.

In Fig. 1, we present the plots ofG0 with respect to the

FIG. 1. Plots ofG0 as the function of the exponentk. The
values of the parameterr are, respectively,~a! r51, ~b! r
50.00462,~c! r50.0002. All quantities are dimensionless.
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57 6069SOLITARY WAVES AND THEIR CRITICAL BEHAVIOR . . .
exponentk. Very different behaviors appear for large an
small values of the parameterr in Eq. ~17!. The critical value
of r is found to be

rc50.00462 . . . . ~27!

Aboverc the ~squared! width of the solitary wave decrease
monotonically as the exponentk grows, whereas belowrc
nontrivial extrema are observed. It can be analytically sho
that there exists only one local minimum. Forr.rc , the
width decreases monotonically with respect tok. A larger
value of k corresponds to a stronger singularity in the
sponse, which may give a tight mode coupling to realiz
sharp focusing. However, forr,rc , the situation drastically
changes. For example, in a medium havingk>0.8, the width
at the fixed point is almost three times larger than that i
medium ofk>0.2. Therefore, belowrc , the sharp focusing
is hardly obtained in media with relatively largek. This is
the main result of the present work.

Finally we briefly discuss small perturbation on the var
tional wave packet. Let us consider the initial conditio
Since our system is an autonomous Hamiltonian system
Hamiltonian~16! is a constant of motion. It is set as

H5ME, ~28!

whereE is a constant to be determined by an initial con
tion. Therefore, recalling Eq.~24!, it follows from this con-
straint that

Ġ2516EG241
8C~k!

k
G12k/2. ~29!

Changing the variable

G52Q2, ~30!

we can rewrite Eq.~29! in the standard mechanical form:

1

2
Q̇25E2U~Q!, ~31!

whereU is the potential given by

U~Q!5
1

8Q22
C~k!

211k/2kQk . ~32!
o
nd

P

.

n

-
a

a

-
.
he

-

This potential is bounded below and approaches zero f
the negative values. Its minimum value is determined by
fixed-point solution:

Emin5U~AG0/2!. ~33!

Thus, with any initial condition satisfying

Emin<E,0, ~34!

the motion ofQ is bounded and oscillatory, and therefore t
solution is in fact stable. In particular, the oscillation wi
frequency

v5A22kC~k!2/~22k! ~35!

is induced by small perturbation on the fixed point, i.e., t
variational shape-preserving solution.

In conclusion, we have studied the physical properties
a solitary wave propagating in the nonlinear nonlocal m
dium with the power-law response. Using the tim
dependent variational principle with the Gaussian ansatz,
have clarified how the width of the solitary wave depends
the exponent of the power law. We have found a critic
behavior of the wave-packet width under the change of
value of the coupling constant multiplied by the total inte
sity. We have also presented the proof of the stability of
system for a general configuration of physical wave fun
tions.

We have studied a nonlocal extension of the NLSE. T
standard NLSE is known to play a central role in nonline
optics and optical solitons@2#. @There, the time paramete
should be replaced by the coordinate of the longitudi
~propagation! axis.# The nonlinearity is induced by the Ker
media. The present work suggests that it is of interes
investigate optical properties of such media at their criti
states from the viewpoint of the quality of self-focusing
optical solitons.
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ported in part by the Atomic Energy Research Institute
Nihon University.
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